Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602178

RESUMO

The compaction of cohesive granular materials is a common operation in powder-based manufacture of many products. However, the influence of particle-scale parameters such as bond strength on the packing structure and the general scaling of the compaction process are still poorly understood. We use particle dynamics simulations to analyze jammed configurations obtained by dynamic compaction of sticky particles under a fixed compressive pressure for a broad range of system parameter values. We show that relative porosity, representing the relative importance of porosity with respect to its minimum and maximum values, is a unique function of a modified cohesion number that combines adhesion force, confining pressure, and particle size, as well as contact stiffness, which is often assumed to be ineffective but is shown here to play an essential role in compaction. An asymmetric sigmoidal form based on two power laws provides an excellent fit to the data. The statistical properties of the bond network reveal self-balanced force structures and an exponential fall-off of the number of both tensile and compressive forces. Remarkably, the properties of the bond network depend on the cohesion number rather than the modified cohesion number, implying that similar bond network characteristics are compatible with a broad range of porosities mainly due to the effect of contact stiffness. We also discuss the origins of data points escaping the general scaling of porosity and show that they reflect either finite system size or rigid confining walls.

2.
Soft Matter ; 20(16): 3411-3424, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38506840

RESUMO

Hexapods, consisting of three mutually orthogonal arms, have been utilized as a representative nonconvex shape to demonstrate the impact of interlocking on the strength properties of granular materials. Nevertheless, the microstructural characteristics of hexapod packings, which underlie their strength, have remained insufficiently characterized. We use particle dynamics simulations to build isotropically-packed aggregates of hexapods and we analyze the effects of aspect ratio and interparticle friction on the microstructure and force transmission. We find that the packing fraction is an unmonotonic function of aspect ratio due to competition between steric exclusions and interlocking. Interestingly, the contact coordination number declines considerably with friction coefficient, showing the stronger effect of friction on the stability of hexapod packings as compared with sphere packings. The pair distribution functions show that local ordering due to steric exclusions disappears beyond the aspect ratio 3 and the hexapods touch their second neighbors. Remarkably, hexapods of aspect ratio 3 tend to align with their neighbors and form locally ordered structures, implying a contact coordination number which is highly sensitive to the confining pressure. We also show that the probability density function of forces between hexapods is similar to that of sphere packings but with broadening exponential fall-off of strong forces as aspect ratio increases. Finally, the elastic bulk modulus of the aggregates is found to increase considerably with aspect ratio as a consequence of the rapid increase of contact density and the number of contacts with second neighbors.

3.
Phys Rev E ; 103(3-1): 032904, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33862783

RESUMO

By means of 3D particle dynamics simulations, we analyze the microstructure of granular materials subjected to isochoric (constant volume) cyclic shearing, which drives the system towards a liquefaction state characterized by loops of jamming-unjamming transition with periodic loss of strength and irreversible accumulation of shear strain. We first show that the macroscopic response obtained by these simulations agrees well with the most salient features of the well-known cyclic behavior of granular materials both before and after liquefaction. Then we investigate the evolution of particle connectivity, force transmission, and anisotropies of contact and force networks. The onset of liquefaction is marked by partial collapse of the force-bearing network with rapid drop of the coordination number and nonrattler fraction of particles, and significant broadening of the contact force probability density function, which begins in the preliquefaction period. We find that the jamming transition in each cycle occurs for a critical value of the coordination number that can be interpreted as the percolation threshold of the contact network and appears to be independent of the initial mean stress, void ratio, and cyclic shear amplitude. We show that upon unjamming in each cycle an isotropic loss of contacts occurs and is followed by the development of high contact anisotropy and a large proportion of particles with only two or three contacts. The higher mobility of the particles also involves a lower degree of frustration of particle rotations and thus lower friction mobilization and tangential force anisotropy. These findings are relevant to both undrained cyclic deformations of saturated soils and rheology of dense non-Brownian suspensions where volume change is coupled with pore liquid drainage conditions.

4.
Phys Rev E ; 102(2-1): 022906, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942475

RESUMO

We use the bond-based peridynamics approach to analyze the strength and fracture of dense granular aggregates with variable amount of a solid binding matrix, distributed according to a simple protocol in the interstitial space between particles. We show the versatility of the peridynamics approach in application to crack propagation and its scaling behavior in a homogeneous medium (in the absence of particles and pores). Then we apply this method to simulate the deformation and failure of aggregates as a function of the amount of the binding matrix under tensile loading. We find that the tensile strength is a strongly nonlinear function of the matrix volume fraction. It first increases slowly and levels off as the gap space in-between touching particles is gradually filled by the binding matrix, up to nearly 90% of the total pore volume, and then a rapid increase occurs to the maximum strength as the remaining interstitial space, composed of isolated pores between four or more particles, is filled. By analyzing the probability density functions of stresses in the particle and matrix phases, we show that the adhesion of the matrix to the particles and the thickening of stress chains (i.e., stresses distributed over larger cross sections) control the strength in the first case whereas the homogenizing effect of the matrix by filling the pores (hence reducing stress concentration) is at the origin of further increase of the strength in the second case. Interestingly, these two mechanisms contribute almost equally to the total strength.

5.
Phys Rev E ; 101(5-1): 052904, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32575249

RESUMO

We perform systematic particle dynamics simulations of granular flows composed of breakable particles in a 2D rotating drum to investigate the evolution of the mean particle size and specific surface as a function of system parameters such as drum size, rotation speed, filling degree, and particle shape and size. The specific surface increases at a nearly constant rate up to a point where particle breakage begins to slow down. The rates of particle breakage for all values of system parameters are found to collapse on a master curve when the times are scaled by the characteristic time defined in the linear regime. We determine the characteristic time as a function of all system parameters, and we show that the rate of particle breakage can be expressed as a linear function of a general scaling parameter that incorporates all our system parameters. This scaling behavior provides a general framework for the upscaling of drum grinding process from laboratory to industrial scale.

6.
Phys Rev E ; 101(3-1): 032906, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289997

RESUMO

We use particle dynamics simulations to investigate the evolution of a wet agglomerate inside homogeneous shear flows of dry particles. The agglomerate is modeled by introducing approximate analytical expressions of capillary and viscous forces between particles in addition to frictional contacts. During shear flow, the agglomerate may elongate, break, or be eroded by loss of its capillary bonds and primary particles. By systematically varying the shear rate and surface tension of the binding liquid, we characterize the rates of these dispersion modes. All the rates increase with increasing inertial number of the flow and decreasing cohesion index of the agglomerate. We show that the data points for each mode collapse on a master curve for a dimensionless scaling parameter that combines the inertial number and the cohesion index. The erosion rate vanishes below a cutoff value of the scaling parameter. This leads to a power-law borderline between the vanishing erosion states and erosion states in the phase space defined by the inertial number and the cohesion index.

7.
Nat Commun ; 11(1): 1476, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193385

RESUMO

Granular flows are omnipresent in nature and industrial processes, but their rheological properties such as apparent friction and packing fraction are still elusive when inertial, cohesive and viscous interactions occur between particles in addition to frictional and elastic forces. Here we report on extensive particle dynamics simulations of such complex flows for a model granular system composed of perfectly rigid particles. We show that, when the apparent friction and packing fraction are normalized by their cohesion-dependent quasistatic values, they are governed by a single dimensionless number that, by virtue of stress additivity, accounts for all interactions. We also find that this dimensionless parameter, as a generalized inertial number, describes the texture variables such as the bond network connectivity and anisotropy. Encompassing various stress sources, this unified framework considerably simplifies and extends the modeling scope for granular dynamics, with potential applications to powder technology and natural flows.

8.
Phys Rev Lett ; 125(25): 255501, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416387

RESUMO

Using a 3D mean-field lattice-gas model, we analyze the effect of confinement on the nature of capillary phase transition in granular aggregates with varying disorder and their inverse porous structures obtained by interchanging particles and pores. Surprisingly, the confinement effects are found to be much less pronounced in granular aggregates as opposed to porous structures. We show that this discrepancy can be understood in terms of the surface-surface correlation length with a connected path through the fluid domain, suggesting that this length captures the true degree of confinement. We also find that the liquid-gas phase transition in these porous materials is of second order nature near capillary critical temperature, which is shown to represent a true critical temperature, i.e., independent of the degree of disorder and the nature of the solid matrix, discrete or continuous. The critical exponents estimated here from finite-size scaling analysis suggest that this transition belongs to the 3D random field Ising model universality class as hypothesized by F. Brochard and P.G. de Gennes, with the underlying random fields induced by local disorder in fluid-solid interactions.

9.
Phys Rev E ; 100(4-1): 042906, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770910

RESUMO

We analyze the packing properties of simulated three-dimensional polydisperse samples of spherical particles assembled by mechanical compaction with zero interparticle friction, leading to random close-packed configurations of the highest packing fraction. The particle size distributions are generated from the incomplete beta distribution with three parameters: A size span and two shape parameters that control the curvature of the distribution function. For each size distribution, the number of particles is determined by accounting for the statistical representativity of all particle size classes in terms of both the numbers and volumes of particles. Remarkably, the packing fraction increases, up to a small variability, with an effective size span, known as the coefficient of uniformity, that combines the three control parameters of the distribution. The local particle environments are characterized by the particle connectivities and anisotropies, which unveil the class of particles with four contact neighbors as the largest class with an increasing population as a function of size span, indicating the higher stability of particles trapped by four larger particles. As a result of increasing topological inhomogeneity of the packings, the force distributions get increasingly broader with increasing effective size span. Finally, we find that larger particles do not always carry stronger average stresses, in particular when the particle size distribution allows for a sufficiently large number of small particles.

10.
Eur Phys J E Soft Matter ; 42(9): 127, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31559501

RESUMO

In order to get insight into the wet agglomeration process, we numerically investigate the growth of a single granule inside a dense flow of an initially homogeneous distribution of wet and dry particles. The simulations are performed by means of the discrete element method and the binding liquid is assumed to be transported by the wet particles, which interact via capillary and viscous force laws. The granule size is found to be an exponential function of time, reflecting the conservation of the amount of liquid and the decrease of the number of available wet particles inside the flow during agglomeration. We analyze this behavior in terms of the accretion and erosion rates of wet particles for a range of different values of material parameters such as mean particle size, size polydispersity, friction coefficient and liquid viscosity. In particular, we propose a phase diagram of the granule growth as a function of the mean primary particle diameter and particle size span, which separates the parametric domain in which the granule grows from the domain in which the granule does not survive.

11.
Phys Rev E ; 99(4-1): 042903, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108586

RESUMO

Roots provide basic functions to plants such as water and nutrient uptake and anchoring in soil. The growth and development of root systems contribute to colonizing the surrounding soil and optimizing the access to resources. It is generally known that the variability of plant root architecture results from the combination of genetic, physiological, and environmental factors, in particular soil mechanical resistance. However, this last factor has never been investigated at the soil grain scale for roots. In this paper, we are interested in the effect of the disordered texture of granular soils on the evolution of forces experienced by the root cap during its growth. We introduce a numerical model in which the root is modeled as a flexible self-elongating tube that probes a soil composed of solid particles. By means of extensive simulations, we show that the forces exerted on the root cap reflect interparticle force chains. Our simulations also show that the mean force declines exponentially with root flexibility, the highest force corresponding to the soil hardness. Furthermore, we find that this functional dependence is characterized by a single dimensionless parameter that combines granular structure and root bending stiffness. This finding will be useful to further address the biological issues of mechanosensing and thigmomorphogenesis in plant roots.

12.
Phys Rev E ; 97(5-1): 052902, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906944

RESUMO

We present here a numerical study dedicated to the fluidization of a submerged granular medium induced by a localized fluid injection. To this end, a two-dimensional (2D) model is used, coupling the lattice Boltzmann method (LBM) with the discrete element method (DEM) for a relevant description of fluid-grains interaction. An extensive investigation has been carried out to analyze the respective influences of the different parameters of our configuration, both geometrical (bed height, grain diameter, injection width) and physical (fluid viscosity, buoyancy). Compared to previous experimental works, the same qualitative features are recovered as regards the general phenomenology including transitory phase, stationary states, and hysteretic behavior. We also present quantitative findings about transient fluidization, for which several dimensionless quantities and scaling laws are proposed, and about the influence of the injection width, from localized to homogeneous fluidization. Finally, the impact of the present 2D geometry is discussed, by comparison to the real three-dimensional (3D) experiments, as well as the crucial role of the prevailing hydrodynamic regime within the expanding cavity, quantified through a cavity Reynolds number, that can presumably explain some substantial differences observed regarding upward expansion process of the fluidized zone when the fluid viscosity is changed.

13.
Eur Phys J E Soft Matter ; 41(4): 50, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29644548

RESUMO

We investigate sheared granular materials composed of crushable particles by means of contact dynamics simulations and the bonded-cell model for particle breakage. Each particle is paved by irregular cells interacting via cohesive forces. In each simulation, the ratio of the internal cohesion of particles to the confining pressure, the relative cohesion, is kept constant and the packing is subjected to biaxial shearing. The particles can break into two or more fragments when the internal cohesive forces are overcome by the action of compressive force chains between particles. The particle size distribution evolves during shear as the particles continue to break. We find that the breakage process is highly inhomogeneous both in the fragment sizes and their locations inside the packing. In particular, a number of large particles never break whereas a large number of particles are fully shattered. As a result, the packing keeps the memory of its initial particle size distribution, whereas a power-law distribution is observed for particles of intermediate size due to consecutive fragmentation events whereby the memory of the initial state is lost. Due to growing polydispersity, dense shear bands are formed inside the packings and the usual dilatant behavior is reduced or cancelled. Hence, the stress-strain curve no longer passes through a peak stress, and a progressive monotonic evolution towards a pseudo-steady state is observed instead. We find that the crushing rate is controlled by the confining pressure. We also show that the shear strength of the packing is well expressed in terms of contact anisotropies and force anisotropies. The force anisotropy increases while the contact orientation anisotropy declines for increasing internal cohesion of the particles. These two effects compensate each other so that the shear strength is nearly independent of the internal cohesion of particles.

14.
Eur Phys J E Soft Matter ; 41(1): 2, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29299695

RESUMO

Motivated by the understanding of shape effects in granular materials, we numerically investigate the macroscopic and microstructural properties of anisotropic dense assemblies of frictionless polydisperse rigid pentagons in shear flow, and compare them with similar systems of disks. Once subjected to large cumulative shear strains their rheology and microstructure are investigated in uniform steady states, depending on inertial number I, which ranges from the quasistatic limit ([Formula: see text]) to 0.2. In the quasistatic limit both systems are devoid of Reynolds dilatancy, i.e., flow at their random close packing density. Both macroscopic friction angle [Formula: see text], an increasing function of I , and solid fraction [Formula: see text], a decreasing function of I, are larger with pentagons than with disks at small I, but the differences decline for larger I and, remarkably, nearly vanish for [Formula: see text]. Under growing I , the depletion of contact networks is considerably slower with pentagons, in which increasingly anisotropic, but still well-connected force-transmitting structures are maintained throughout the studied range. Whereas contact anisotropy and force anisotropy contribute nearly equally to the shear strength in disk assemblies, the latter effect dominates with pentagons at small I, while the former takes over for I of the order of 10-2. The size of clusters of grains in side-to-side contact, typically comprising more than 10 pentagons in the quasistatic limit, very gradually decreases for growing I.

15.
Phys Rev Lett ; 119(7): 075501, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949684

RESUMO

By means of extensive lattice-element simulations, we investigate stress transmission and its relation with failure properties in increasingly disordered porous systems. We observe a non-Gaussian broadening of stress probability density functions under tensile loading with increasing porosity and disorder, revealing a gradual transition from a state governed by single-pore stress concentration to a state controlled by multipore interactions and metric disorder. This effect is captured by the excess kurtosis of stress distributions and shown to be nicely correlated with the second moment of local porosity fluctuations, which appears thus as a (dis)order parameter for the system. By generating statistical ensembles of porous textures with varying porosity and disorder, we derive a general expression for the fracture stress as a decreasing function of porosity and disorder. Focusing on critical sites where the local stress is above the global fracture threshold, we also analyze the transition to failure in terms of a coarse-graining length. These findings provide a general framework which can also be more generally applied to multiphase and structural heterogeneous materials.

16.
Phys Rev E ; 94(4-1): 042901, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841540

RESUMO

We analyze the shear strength and microstructure of binary granular mixtures consisting of disks and elongated particles by varying systematically both the mixture ratio and degree of homogeneity (from homogeneous to fully segregated). The contact dynamics method is used for numerical simulations with rigid particles interacting by frictional contacts. A counterintuitive finding of this work is that the shear strength, packing fraction, and, at the microscopic scale, the fabric, force, and friction anisotropies of the contact network are all nearly independent of the degree of homogeneity. In other words, homogeneous mixtures have the same strength properties as segregated packings of the two particle shapes. In contrast, the shear strength increases with the proportion of elongated particles correlatively with the increase of the corresponding force and fabric anisotropies. By a detailed analysis of the contact network topology, we show that various contact types contribute differently to force transmission and friction mobilization.

17.
Eur Phys J E Soft Matter ; 38(5): 133, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26002530

RESUMO

We investigate by means of Contact Dynamics simulations the transient dynamics of a 2D granular pile set into motion by applying shear velocity during a short time interval to all particles. The spreading dynamics is directly controlled by the input energy whereas in recent studies of column collapse the dynamics scales with the initial potential energy of the column. As in column collapse, we observe a power-law dependence of the runout distance with respect to the input energy with nontrivial exponents. This suggests that the power-law behavior is a generic feature of granular dynamics, and the values of the exponents reflect the distribution of kinetic energy inside the material. We observe two regimes with different values of the exponents: the low-energy regime reflects the destabilization of the pile by the impact with a runout time independent of the input energy whereas the high-energy regime is governed by the input energy. We show that the evolution of the pile in the high-energy regime can be described by a characteristic decay time and the available energy after the pile is destabilized.

18.
Artigo em Inglês | MEDLINE | ID: mdl-25871099

RESUMO

By means of extensive contact dynamics simulations, we analyze the combined effects of polydispersity both in particle size and in particle shape, defined as the degree of shape irregularity, on the shear strength and microstructure of sheared granular materials composed of pentagonal particles. We find that the shear strength is independent of the size span, but unexpectedly, it declines with increasing shape polydispersity. At the same time, the solid fraction is an increasing function of both the size span and the shape polydispersity. Hence, the densest and loosest packings have the same shear strength. At the scale of the particles and their contacts, we analyze the connectivity of particles, force transmission, and friction mobilization as well as their anisotropies. We show that stronger forces are carried by larger particles and propped by an increasing number of small particles. The independence of shear strength with regard to size span is shown to be a consequence of contact network self-organization, with the falloff of contact anisotropy compensated by increasing force anisotropy.

19.
Artigo em Inglês | MEDLINE | ID: mdl-25768494

RESUMO

Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10 depending on cell shape distribution. We show that this distribution may be understood in terms of percolating critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size dependence of the compressive strength in good agreement with our simulation data.

20.
Artigo em Inglês | MEDLINE | ID: mdl-25679552

RESUMO

By means of numerical simulations, we show that assemblies of frictionless rigid pentagons in slow shear flow possess an internal friction coefficient (equal to 0.183±0.008 with our choice of moderately polydisperse grains) but no macroscopic dilatancy. In other words, despite side-side contacts tending to hinder relative particle rotations, the solid fraction under quasistatic shear coincides with that of isotropic random close packings of pentagonal particles. Properties of polygonal grains are thus similar to those of disks in that respect. We argue that continuous reshuffling of the force-bearing network leads to frequent collapsing events at the microscale, thereby causing the macroscopic dilatancy to vanish. Despite such rearrangements, the shear flow favors an anisotropic structure that is at the origin of the ability of the system to sustain shear stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...